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ABSTRACT. In practical situations, solving a given problem usually calls for the systematic and 
simultaneous analysis of more than one objective function. Hence, a worthwhile research question may be 
posed thus: In multiobjective optimization, what can facilitate the decision maker in choosing the best 
weighting? Thus, this study attempts to propose a method that can identify the optimal weights involved in 
a multiobjective formulation. Our method uses functions of Entropy and Global Percentage Error as 
selection criteria of optimal weights. To demonstrate its applicability, we employed this method to 
optimize the machining process for vertical turning martensitic gray cast iron piston rings, maximizing the 
productivity and the life of cutting tool and minimizing the cost, using feed rate and rotation of the cutting 
tool as the decision variables. The proposed optimization goals were achieved with feed rate =  
0.35 mm rev-1 and rotation = 248 rpm. Thus, the main contributions of this study are the proposal of a 
structured method, differentiated in relation to the techniques found in the literature, of identifying 
optimal weights for multiobjective problems and the possibility of viewing the optimal result on the Pareto 
frontier of the problem. This viewing possibility is very relevant information for managing processes more 
efficiently. 
Keywords: pareto frontier, optimal weights, mixture design of experiments. 

Ponderação baseada em Entropia aplicada à abordagem de interseção normal à fronteira: 
o caso do torneamento vertical de anéis de pistão de ferro fundido martensítico 

RESUMO. Em situações práticas, normalmente se tem mais de uma função objetivo a ser analisada de 
maneira sistemática e simultânea para a resolução de determinado problema. Desta forma, surge a seguinte 
questão de pesquisa: como auxiliar o tomador de decisão na escolha da melhor ponderação ao se trabalhar 
com otimização multiobjetivo? O presente trabalho propõe um método que possa identificar os pesos 
ótimos envolvidos em uma formulação multiobjetivo utilizando as funções de Entropia e de Erro 
Percentual Global (EPG) como critérios de seleção. Empregou-se o método para otimizar o processo de 
torneamento vertical de anéis de pistão de ferro fundido cinzento martensítico, maximizando a 
produtividade e a vida da ferramenta de corte e minimizando o custo, usando como variáveis de decisão o 
avanço e a rotação da peça. Os objetivos de otimização propostos foram alcançados com avanço =  
0,35 mm rot.-1 e rotação = 248 rpm. Assim, as principais contribuições do presente trabalho foram a 
proposição de um método estruturado, diferenciado em relação às técnicas encontradas na literatura, para a 
identificação de pesos ótimos em problemas multiobjetivos e a possibilidade de visualização do resultado 
ótimo na fronteira de Pareto do problema, sendo esta última uma informação de grande relevância para 
uma gestão mais eficiente dos processos. 
Palavras-chave: fronteira de pareto, pesos ótimos, arranjo de misturas. 

Introduction 

Optimization techniques, in recent years, have 
evolved greatly, finding wide application in various 
types of industries, mainly because making decision 
about complex problems involves process 
optimization and engineering design (HEJAZI  

et al., 2014). They are now capable of solving ever 
larger and more complex problems, thanks to a new 
generation of powerful computers. 

According to Rao (2009), optimization is the act, 
in any given circumstance, of obtaining the best 
result. In this context, the main purpose of decision 
making in industrial processes is to minimize the 
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effort required to develop a specific task or to 
maximize the desired benefit. The effort required or 
the benefit desired in any practical situation can be 
expressed as a function of certain decision variables. 
This function is known as the objective function. 

In practical situations, however, solving a given 
problem usually calls for the systematic and 
simultaneous analysis of more than one objective 
function, resulting in multiobjective optimization 
(HUANG et al., 2006, ADEYEMO; 
OLOFINTOYE, 2014). 

In multiobjective problems, it is very unusual 
that all functions are minimized simultaneously by 
one optimal solution x*. Indeed, the multiple 
objectives have conflicts of interest (RAO, 2009). 
What becomes of great relevance to these types of 
problems, according to Rao (2009), is the concept of 
a Pareto-optimal solution, also called a compromise 
solution. The author refers to a feasible solution  
x* as Pareto-optimal if no other feasible solution  
z exists such that , i = 1,2,..., m, with 

in at least one objective j.  

Pareto-optimal solutions occur because of the 
conflicting nature of the objectives, where the value 
of any objective function cannot be improved 
without impairing at least one of the others. In this 
context, a trade-off represents giving up one 
objective to improve another (ESKELINEN; 
MIETTINEN, 2011). 

The purpose of multiobjective optimization 
methods is to offer support and ways to find the best 
compromise solution, in which the decision maker 
and his preference information play important roles 
(ESKELINEN; MIETTINEN, 2011). A decision 
maker, according to Eskelinen and Miettinen 
(2011), is an expert in the domain of the problem 
under consideration and who typically is responsible 
for the final solution. In order to define the relative 
importance of each objective function, the decision 
maker must assign them different weights. 

Because a characteristic property of 
multiobjective optimization is the problem of 
weighting objective functions, how a decision maker 
is involved with the solution of this problem is the 
basis for its classification. According to Hwang and 
Masud (1979) and Miettinen (1999), the classes are: 
1. no-preference methods: methods where no 
articulation of preference information is made;  
2. a priori methods: methods where a priori 
articulation of preference information is used, i.e., 
the decision-maker selects the weighting before 
running the optimization algorithm; 3. interactive 
methods: methods where progressive articulation of 
preference information is used, i.e., the decision 

maker interacts with the optimization program 
during the optimization process; and 4. a posteriori 
methods: methods where a posteriori articulation of 
preference information is used, i.e., no weighting is 
specified by the user before or during the 
optimization process. However, as no classification 
can be complete, these classifications are not 
absolute. Overlapping and combinations of classes 
are possible and some methods can be considered to 
belong to more than one class (HWANG; MASUD, 
1979). This paper considers the a posteriori method 
in consonance with generate first-choose later 
approach (MESSAC; MATTSON, 2002). 

A multiobjective problem is generally solved by 
reducing it to a scalar optimization problem; hence, 
the term scalarization. Scalarization is the converting 
of the problem, by aggregation of the components of 
the objective functions, into a single or a family of 
single objective optimization problems with a  
real-valued objective function (HWANG; MASUD, 
1979). The literature reports different scalarization 
methods. The most common is the weighted sum 
method. 

The weighted sum method is widely employed 
to generate the trade-off solutions for nonlinear 
multiobjective optimization problems. According to 
Shin et al. (2011), a bi-objective problem is convex if 
the feasible set X is convex, as are the functions. 
When at least one objective function is not convex, 
the bi-objective problem becomes non-convex, 
generating a non-convex and even unconnected 
Pareto frontier. The main consequence of a  
non-convex Pareto frontier is that points on the 
concave parts of the trade-off surface will not be 
estimated (DAS; DENNIS, 1997). This instability 
happens because the weighted sum is not a 
Lipshitzian function of the weight w 
(VAHIDINASAB; JADID, 2010). Another 
drawback to the weighted sums is related to the 
uniform spread of Pareto-optimal solutions. Even if 
a uniform spread of weight vectors are used, the 
Pareto frontier will be neither equispaced nor evenly 
distributed (DAS; DENNIS, 1997, 
VAHIDINASAB; JADID, 2010). 

Given its drawbacks, the weighted sum method 
is not used in this paper. Instead, the normal 
boundary intersection method is employed (NBI), 
as proposed by Das and Dennis (1998). These 
authors proposed the NBI method to overcome the 
disadvantages of the weighted sum method, showing 
that the Pareto surface is evenly distributed 
independent of the relative scales of the objective 
functions. It is due to this feature that this study uses 
the NBI method to build the Pareto frontier. 

*( ) (x )i if z f≤
*( ) (x )j if z f<
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In the multiobjective optimization process, the 
decision maker plays an important role, for it is the 
decision maker that eventually obtains a single 
solution to be used in his original multidisciplinary 
decision-making problem. Hence, a worthwhile 
research question may be posed thus: In 
multiobjective optimization, what can facilitate the 
decision maker in choosing the best weighting? 

In answering such a question, we propose the 
use two objectively defined selection criteria: 
Shannon's Entropy Index (SHANNON, 1948) and 
Global Percentage Error (GPE). Entropy can be 
defined as a measure of probabilistic uncertainty. Its 
use is indicated in situations where the probability 
distributions are unknown, in search of 
diversification. Among the many other desirable 
properties of Shannon's Entropy Index, we highlight 
the following: 1) Shannon’s measure is nonnegative, 
and 2) its measure is concave. Property 1 is desirable 
because the Entropy Index ensures non-null 
solutions. Property 2 is desirable because it is much 
easier to maximize a concave function than a  
non-concave one (FANG et al., 1997). The GPE, as 
its name declares, is an error index. In this case, we 
want to evaluate the distance of the determined 
Pareto optimal solution from its ideal value. 

Thus, this study attempts to propose a method 
that can identify the optimal weights involved in a 
multiobjective formulation. Our method uses both a 
Normal Boundary Intersection (NBI) approach 
along with Mixture Design of Experiments and, as 
selection criteria of optimal weights, uses the 
functions of Entropy and Global Percentage Error 
(GPE). 

To demonstrate its applicability, we employed 
this method to optimize the machining process for 
vertical turning martensitic gray cast iron piston 
rings. This is a relatively complex machining 
process. A roughing operation, it is conducted 
simultaneously on the outer and inner diameters of 
the parts. The machining is carried out using two 
twin cutting tools with special geometry; abundant 
cooling is provided throughout the cutting process 
(SEVERINO et al., 2012), which is important to 
increase machining performance (ÇOLAK, 2014, 
RODRIGUES et al., 2014). According to Wang  
et al. (2007), of the many types of cast iron used by 
the auto industry, gray cast iron is the most used. 
This is the main reason to study this process. What 
the industry needs is a conditioning process that 
improves the machinability of martensitic gray cast 
iron in vertical turning operations of piston rings. 
To meet this need, this paper proposes an 
optimization of cutting conditions, maximizing the 
productivity and the life of cutting tool and 

minimizing the cost, using feed rate and rotation of 
the cutting tool as the decision variables, according 
to proposed by Severino et al.(2012). It is important 
to note that in the vertical turning process we are 
unable to change directly the cutting speed being 
this parameter considered stable when working 
within the manufacturer’s specifications. Because of 
this process feature, cutting speed is not used as a 
variable in the present study. 

Theoretical background 

Design of experiments 

According to Montgomery (2001), an 
experiment can be defined as a test or a series of tests 
in which purposeful changes are made to the input 
variables of a process, aiming thereby to observe 
how such changes affect the responses. Design of 
Experiments (DOE) is then defined as the process 
of planning experiments so that appropriate data is 
collected and then analyzed by statistical methods, 
leading to valid and objective conclusions 
(MONTGOMERY, 2001). 

According to Montgomery (2001), the three 
basic principles of DOE are randomization, 
replication, and blocking. Randomization is the 
implementation of experiments in a random order 
such that the unknown effects of the phenomena are 
distributed among the factors, thereby increasing the 
validity of the research. Replication is the repetition 
of the same test several times, creating a variation in 
the response that is used to evaluate experimental 
error. The blocking should be used when it is not 
possible to maintain the homogeneity of the 
experimental conditions. This technique allows us 
to evaluate whether the lack of homogeneity affects 
the results. 

The steps of DOE are (MONTGOMERY, 
2001): recognition and problem statement; choice of 
factors, levels and variations; selection of the 
response variable; choice of experimental design; 
execution of the experiment; statistical analysis of 
data; conclusions and recommendations. 

Regarding the experimental projects, the most 
widely used techniques include the full factorial 
design, the fractional factorial design, the 
arrangements of Taguchi, response surface 
methodology and experiments of mixtures 
Montgomery (2001). 

Response surface methodology 

Response surface methodology (RSM) is a 
collection of mathematical and statistical tools used 
to model and analyze problems in which responses 
of interest are influenced by several variables. The 
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objective of RSM is to optimize these responses 
(MONTGOMERY, 2001). 

For most industrial processes, the relationships 
between responses and independent variables are 
unknown, so RSM seeks to find a suitable 
approximation to represent the responses of interest 
as a function of these variables. To describe such 
relationships, researchers generally use polynomial 
functions. Thus, if a response is well modeled by a 
linear function, the approximate ratio can be 
represented by the following first order model 
(MONTGOMERY, 2001):  

 

0 1 1 2 2( ) k ky x x x xβ β β β ε= + + + + +  (1)
 

where: 
( )y x  – Response of interest; 
ix  – Independent variables; 

iβ  – Coefficients to be estimated; 
k  – Number of independent variables; 
ε  – Experimental error. 

If the answer presents curvature, then a 
polynomial of a higher degree must be used as the 
second-order model: 

 

2
0

1 1
( )

k k

i i ii i ij i j
i i i j

y x x x x xβ β β β ε
= = <

= + + + +   (2) 

 
Almost all problems of response surface use 

either one or both models presented. In addition, 
while it is unlikely for a polynomial model to behave 
as a proper approach for the entire experimental 
space covered by the independent variables, such 
models have been shown to be effective for a 
specific region (MONTGOMERY, 2001). 

As one objective of RSM is to optimize the 
response, it is recommended, whenever possible, to 
represent it by second-order models, since the 
curvature shown by these defines the location of a 
stationary point. Therefore, when the response of 
interest presents a linear behavior, the information 
from the first-order model should be used to find 
the region of curvature. This should be done using 
the vector gradient method (steepest descent/ascent) 
(MONTGOMERY, 2001). 

The estimation of coefficients, defined by the 
model of Equations (1) and (2), is typically 
performed using the Ordinary Least Squares 
method. With this method, an approximate function 
that connects the response of interest with the 
process variables would be constructed 
(MONTGOMERY, 2001). After constructing the 

model, the statistical significance of the same should 
be verified through Analysis of Variance (ANOVA). 
ANOVA, apart from revealing the significance of 
the model as a whole, permits one to check which of 
the model’s terms are significant and which may be 
neglected. The fit is represented by the coefficient of 
determination (R2), which represents the percentage 
of the observed data in the response that can be 
explained by the mathematical model. Associated 
with this coefficient is the adjusted R2, which is an 
alternative to measuring the coefficient of 
determination. The adjusted R2 penalizes the 
inclusion of less explanatory regressors, avoiding the 
tendency to overestimate the current variation in the 
data, taken by R2, when a larger number of variables 
are inserted. For the modeling of the response 
surface functions, the experimental arrangement 
most often used for data collection is the central 
composite design (CCD) (MONTGOMERY, 
2001). CCD, for k factors, is a matrix formed by 
three distinct groups of experimental elements: a full 
factorial 2k or fractional 2k-p, where p is the desired 
fraction of the experiment; a set of central points 
(cp); and, in addition, a group of extreme levels 
called axial points, given by 2k. The number of 
experiments required is given by the sum:  
2k or (k-p) + cp + 2k. In CCD, the axial points are 
within a distance α of the central points, being 

1
4(2 )kα =  (BOX; DRAPER, 1987). 

Mixture design of experiments 

In mixture design of experiments, the factors are 
the ingredients or components of a mixture, and 
consequently, their levels are not independent. For 

example, if 1 2, , , px x x  indicate the proportions of  
p components of a mixture, then 
(MONTGOMERY, 2001): 

The constraint of Equation (3) can be viewed 
graphically in Figure 1 for k=2 and k=3 
components. With two components, the 
experimental region for the mixture experiments 
considers all values along the line x1 + x2 = 1 
(Figure 1a). In the case of three components, this 
region is the area bounded by the triangle seen in 
Figure 1b, where the vertices correspond to the neat 
blends, the sides to the binary mixtures, and the 
triangular region to the complete mixtures 
(MONTGOMERY, 2001). The existence of these 
features makes it quite necessary that mixture 
experiments be planned and conducted through 
specific arrangements and that those most used be, 
in this context, the simplex arrangements 
(CORNELL, 2002). 
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0 1           1,2, ,ix i p≤ ≤ =   and  

1 2 1px x x+ + + =
 

(3)

 

 
Figure 1. Experimental region for mixture experiments 
(MONTGOMERY, 2001).  

The simplex arrangements are defined as a 
configuration in which the vertices of the triangle 
represent the maximum proportion of the input 
variables and the interior points of this triangle 
describe the possible combinations of these 
variables. A simplex arrangement can be of two main 
types: the simplex lattice arrangement and the 
simplex centroid arrangement. A graphical 
representation of simplex arrangement is shown in 
Figure 2. 

 

 
(a)      (b)  

Figure 2. Mixture arrangement: (a) simplex lattice. (b) simplex 
centroid.  

In a simplex lattice, the k input variables define 
points whose proportions are assumed to take into 
consideration m + 1 equally spaced values between 
0 and 1, such that (MONTGOMERY, 2001): 

All possible combinations (mixtures) of the 
proportions of Equation (4) are used, where m is the 
lattice degree of the arrangement. The total number 
of experiments (N) is given by:  

 
1 20, , , ,1          1, 2, ,ix i k
m m

= = 
 

(4) 

( 1)!
!( 1)!

k m
N

m k

+ −=
−  

(5)

 
A disadvantage with the simplex arrangements 

concerns the fact that most experiments occur at the 

borders of the array. This results in few points of the 
internal part being tested. Thus, it is recommended, 
whenever possible, to increase the number of 
experiments by adding internal points to the 
arrangements, as the central points and the axial 
points. In the case of arrangements of mixtures, it is 
noteworthy that the central points correspond to the 
centroid itself. 

Regarding the mathematical models used for the 
representation of the responses, it appears that the 
mixture models have some differences from 
polynomials employed in RSM, mainly due to the 

existence of the constraint 1
1

= =

n

i iw . The models 
of mixtures’ more widespread standard forms are 
(MONTGOMERY, 2001):  

Linear: 
 

( ) 
=

=
q

i
ii xxE

1

β (6) 

 
Quadratic: 
 

( ) 
<=

+=
q

ji
jiij

q

i
ii xxxxE ββ

1  
(7) 

 
Full cubic: 
 

(8) 

 
Special cubic: 
 

( )   
<<<=

++=
kji

q

kjiijk

q

ji
jiij

q

i
ii xxxxxxxE βββ

1
(9) 

 
The distinctive shapes of the previous functions 

makes Equations (6) - (9) to be called canonical 
polynomials of mixtures or Scheffé's polynomials 
(CORNELL, 2002). The estimation of the 
coefficients is done in a similar way to that used in 
RSM, the same occurring for the analysis of 
variance, analysis of residuals and other statistical 
tests. 

Normal boundary intersection approach 

The normal boundary intersection method 
(NBI) is an optimization routine developed to find 
Pareto-optimal solutions evenly distributed for a 
non-linear multiobjective problem (DAS; 
DENNIS, 1998). The first step in the NBI method 
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comprises the establishment of the payoff matrixΦ , 
based on the calculation of the individual minimum 
of each objective function. The solution that 
minimizes the i-th objective function ( )xf i  can be 
represented as ( )**

ii xf . When it replaces the optimal 
individual *

ix  in the remaining objective functions, 
we have ( )*

ii xf . In matrix notation, the payoff  
matrix  Φ , for m objective functions, can be written as 
(VAHIDINASAB; JADID, 2010, BRITO  
et al., 2014):  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * * *
1 1 1 1

* * * *
1

* * * *
1

i m

i i i i m

m m i m m

f x f x f x

f x f x f x

f x f x f x

 
 
 
 

Φ =  
 
 
 
 

 

  

 

  

 

 
(10) 

 
The values of each row of the payoff matrix Φ , 

which consist of minimum and maximum values of 
the i-th objective function , can be used to 
normalize the objective functions, generating the 
normalized matrix  Φ , such as (BRITO et al., 2014): 

 

(11)

 
This procedure is mainly used when the 

objective functions are written in terms of different 
scales or units. The Utopia point is obtained by 
writing a vector with all the individual minimum, 

. Joining the 
maximum values of each objective function, 

, we have a set 
called Nadir point. 

According to Vahidinasab and Jadid (2010), the 
convex combinations of each row of the payoff 
matrix form the Convex Hull of Individual 
Minimum (CHIM). A uniform displacement of any 
point along the Utopia line does not lead to a good 
distribution of the Pareto points. The anchor point 
corresponds to the solution of single optimization 
problem . The m anchor points, depending on 
the number of objective functions, are connected by 
the Utopia line (UTYUZHNIKOV et al., 2009). 

Considering now a convex weighting w, such as 
 represents a point in the CHIM. Let  denote 

the unit normal direction (a column vector of ones) 
to the CHIM at the point   towards the origin; 
then, , with , represents the set of points 
on that normal (SHUKLA; DEB, 2007, JIA; 

IERAPETRITOU, 2007). The Figure 3 graphically 
represents the NBI method, wherein: a, b and e are 
calculated as . 

 

 
Figure 3. Graphical description of NBI method (BRITO  
et al., 2014).  

The intersection point between the normal and 
the nearest boundary of the feasible region from 
origin corresponds to the maximization of distance 
between the Utopia line and the Pareto frontier. 
This optimization problem can be solved iteratively 
for different values of w, creating a Pareto frontier 
uniformly distributed. A common choice for w was 
suggested by Das and Dennis (1998) and Jia and 
Ierapetritou (2007) as  −

=
−= 1

1
1 n

i in ww . Then, the 
optimization problem can be written as (SHUKLA; 
DEB, 2007):  

 

( )

( )
Ω∈

=+
x

x
x

                 
ˆ  :..

 Max
,

FnDwΦts

D
D

 (12) 

 
Process of vertical turning dual piston rings 

The main features of martensitic gray cast iron 
are its low melting point (PRADHAN et al., 2007), 
good fluidity, and high resistance to wear (HEJAZI 
et al., 2009). However, the machinability of 
martensitic gray cast iron is compromised by its 
chemical composition, which include graphitizing 
elements. It also includes others elements that 
impair its machinability: carbide-forming elements 
and hard abrasives, such as niobium, tungsten, 
vanadium, chromium, titanium and molybdenum 
(Table 1). Besides, martensitic microstructure, 
consisting of graphite shafts and a tempered 
martensitic matrix (Figure 4), is an impairment to 
machinability too. This material has an average 
hardness of 40 HRC (SEVERINO et al., 2012). 

Table 1. Chemical Composition of Martensitic Cast Iron 
(SEVERINO et al., 2012). 

% C Si Mn P S Cu Cr Ni Mo Ti V W Nb
Mean 3.4 4.3 0.85 0.18 0.08 1.15 0.4 1.05 1.5 0.15 0.75 0.8 0.65

( )xfi

( ) ( )
U

i
N

i

U
ii
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fxf
xf

−
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U xfxfxff *****
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Figure 4. Tempered martensitic matrix (SEVERINO  
et al., 2012). 

Because the aforementioned features, the cast 
iron piston rings manufactured in sand molds have 
an extremely rough and abrasive martensitic surface. 

Deviations in shape and excessive surface 
roughness, both caused by the smelting process, 
must be corrected. To do so, rings with diameters of 
81.60 mm and 1.95 mm thickness undergo a process 
of dual vertical turning (Figure 5-a) in packets of  
77 units (Figure 5-b), kept under constant pressure 
and aligned with a recess in the internal diameter 
(Figure 5-c).The packets are turned vertically by the 
simultaneous action of two identical, cemented 
carbide tools. 

 

 
Figure 5. Vertical turning of Martensitic cast iron piston rings 
(SEVERINO et al., 2012). 

Metamodeling 

Many of the techniques used in these strategies 
rely, at least in one of its stages, on imprecise and 
subjective elements. Hence, the analysis of 
weighting methods for multiple responses 
demonstrates that, since a large portion of strategies 
still use elements liable to error, significant 
contributions can still be made. 

Our effort to contribute to this topic consists of 
developing an alternative for the identification of 
optimal weights in problems of multiobjective 

optimization. Statistical methods based on DOE are 
important techniques to model objective functions. 
Indeed, for most industrial processes, the 
mathematical relationships are unknown. The 
insertion of optimization algorithms takes place 
during the step of identifying optimal solutions for 
the responses and for the weights—after they have 
been modeled by the statistical techniques 
mentioned above. The GRG algorithm is used by 
the Excel® Solver function. The NBI approach is 
also used in the search for optimal weights, using as 
selection criteria the functions Entropy and Global 
Percentage Error (GPE). 

To reach the weighting methodology proposed 
in this study, the following procedures are used: 

Step 1: Experimental design: 
Establishment of the experimental design and 

execution of experiments in random order. 
Step 2: Modeling the objective functions: 
Definition of equations using the experimental 

data. 
Step 3: Formulation of the problem of 

multiobjective optimization: 
The objective functions (productivity, life of 

cutting tool and cost) are aggregated into a 
formulation of multiobjective optimization, by NBI 
approach, like in Equation (12). 

Step 4: Definition of mixtures arrangement: 
In order to set the weights to be used in the 

optimization routine described in Step 3, a mixtures 
arrangement is done using Minitab® 16. Due to the 
constraint 1

1
= =

n

i iw , the use of the mixtures 
arrangement is feasible. 

Step 5: Solution of the optimization problem: 
The optimization problem of Step 3 is solved for 

each experimental condition defined in Step 4. 
Step 6: Calculation of Global Percentage Error 

(GPE) and Entropy: 
GPE of Pareto-optimal responses is calculated, 

defining how far the analyzed point is from the 
objective function’s ideal value, namely the target. 
The GPE is calculated through expression (ROCHA 
et al., 2015): 

 

1
*

1
−=

= i

i
m

i T

y
GPE  (13) 

 
where: 

*
iy – Value of the Pareto-optimal responses; 

iT  – Targets defined; 

m  – Number of objectives. 
In order to diversify the weights of 

multiobjective optimization, Shannon's Entropy 
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Index is calculated using the Pareto-optimal 
responses, through the expression: 

 

( ) ( )
=

−=
m

i
ii wwxS

1
ln  (14) 

 
Step 7: Modeling of GPE and Entropy: 
The canonical polynomial mixtures for GPE and 

for Entropy is determined using as data the results of 
the calculations from Step 6. 

Step 8: Defining the optimal weights: 
To achieve the optimal weights, we consider the 

following routine: 
 

1

  

. . :    1

          0 1

n

i
i

i

Entropy
Max

GPE

s t w

w

ξ

=

=

=

≤ ≤

  (15) 

 
The Figure 6 shows the proposal step-by-step. 

With this routine, we maximize the relation between 
Entropy and GPE. These parameters are, in this 
proposal, the selection criteria for optimal weights. 

 

 
Figure 6. Optimal Weights Identification Process. 

Once this procedure has been performed and the 
optimal weights have been achieved, the 
multiobjective optimization should be performed to 
reach the optimal values for decision variables in the 
original problem. 

Implementation of the proposed method 

In order to apply the method proposed in this 
study, we used the experimental data presented in 
Severino et al. (2012). The authors aimed to 
optimize, with the application of DOE, a process of 
vertical turning to determine the condition that led 
to a maximum life of the cutting tool (mm), high 
productivity (parts hour-1), and minimum cost  
(US$ part-1). Using feed rate (mm rev-1) and 
rotation (rpm) of the cutting tool as the decision 
variables, a full factorial design 22 (2 factors and  
2 levels) was performed, with 4 axial points and  
5 center points, as suggested by Box and Draper 
(1987), generating 13 experiments (Table 2). The 
criteria for the end of tool life was based on the 
maximum flank wear (= 0.3mm), the breakdown of 
the tool, and the chipping of the piston ring 
(SEVERINO et al., 2012). All operational 
parameters of the vertical turning machine followed 
the manufacturer’s recommendation. 

Table 2. CCD for life of the cutting tool, productivity and cost 
(SEVERINO et al., 2012). 

N Feed  
(mm rev-1)

Rotation 
(rpm) 

Life of cutting tool 
(mm) 

Productivity  
(part hour-1) 

Cost  
(US$ part-1)

1 0.32 235 2,102 1,523 0.04686 
2 0.38 235 2,853 1,712 0.03682 
3 0.32 275 1,802 1,677 0.04474 
4 0.38 275 1,501 1,847 0.04413 
5 0.31 255 1,652 1,555 0.05019 
6 0.39 255 1,802 1,813 0.04117 
7 0.35 227 2,853 1,588 0.04047 
8 0.35 283 1,952 1,807 0.03985 
9 0.35 255 3,153 1,714 0.03562 
10 0.35 255 3,003 1,713 0.03620 
11 0.35 255 3,303 1,716 0.03509 
12 0.35 255 2,703 1,709 0.03755 
13 0.35 255 2,853 1,711 0.03684 

 

Data from the vertical turning process of piston 
rings were used to obtain the total machining time, 
production rate, and the machining cost per part. 
These responses of interest were obtained in the 
various cutting conditions suggested by the CCD 
(Table 2), using life of the cutting tool as a 
characteristic of output that was observed during the 
tests. The productivity (PR) and cost (KP) were 
obtained, as suggested in Severino et al. (2012) and 
Paiva et al. (2007), from Equations (16), (17), and 
(18). According to these authors, the productivity 
and cost parameters are useful processes’ efficiency 
measures. 
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where: 
Tt is the total turning cycle time (min.);  
Ct is the cutting time;  
ta is the approximation and removal tool time;  
ts is the secondary time;  
tp is the setup time;  
T is the tool life;  
tft is the tool change time;  
Z is the batch size (units);  
Sm is the machine cost (US$);  
Sh is the labor cost (US$);  
Vsi is the cost of the internal and external tool holder 
(US$);  
Kpi is the tool price (US$);  
Nfp is the average tool life holders;  
Ns is the number of the tool’s cutting edges. 

The decision variables were analyzed in a coded 
way in order to reduce the variance. Only at the end 
of the analyses were they converted to their uncoded 
values. The parameters used in the experiments and 
their levels are shown in Table 3. 

Table 3. Parameters used in the experiments (SEVERINO  
et al., 2012). 

Factors 
Levels 

-1.41 -1 0 1 1.41 
Feed (mm rev-1) 0.31 0.32 0.35 0.38 0.39 
Rotation (rpm ) 227 235 255 275 283 

 

The analysis of experimental data shown in 
Table 2 generated the mathematical modeling 
presented in Table 4. An excellent fit can be 
observed, once adjusted R2 is higher than 90% for all 
responses. 

Table 4. Mathematical models for the objective functions 
(SEVERINO et al., 2012). 

Terms 
 

Life of cutting 
tool (mm) 

Productivity  
(part hour-1) 

Cost  
(US$ part-1)

Constant 3,003 1,713 0.03626 
Feed  83 90 -0.00293 
Rotation  -366 75 0.00054 
Feed * Feed -638 -15 0.00476 
Rotation * Rotation -300 -8 0.00200 
Feed* Rotation -263 -5 0.00236 
MSE  12.9  
P-value 0.003 0.000 0.000 
Regression (Full quadratic) 0.000 0.000 0.000 
Lack of fit 0.926 0.136 0.279 
Adjusted R2 (%) 91.10% 99.90% 94.30% 
Normality of residuals 0.600 0.511 0.552 

Based on the data presented in Table 4, we start 
applying the weighting method proposed in this 
paper. It is important to mention that Tables 2 and 4 
are equivalent to Steps 1 and 2, respectively, as 
described in this study. 

To implement the optimization routine 
described in Step 3, the payoff matrix was estimated 
initially, obtaining the results reported in Table 5. 
Based on the payoff matrix, it was possible to 
iteratively implement Equation (12), choosing w in 
the range [0;1]. Using this equation, and the 
parameters from Das and Dennis (1998), 70 points 
were achieved and the Pareto frontier was built, as 
shown in Figure 7. 

Table 5. Payoff matrix for the objective functions. 

Life of cutting tool (mm) Productivity (part hour-1) Cost (US$ part-1)
3,140 1,675 0.03612 
1,524 1,850 0.04298 
3,067 1,718 0.03558 

 

 
Figure 7. Pareto frontier by NBI method.  

Once Step 3 was implemented, an arrangement 
of mixtures for the weights of each objective 
function (Step 4) was defined. Subsequently, the 
solution of the optimization problem of Step 3 was 
obtained for each experimental condition defined by 
the arrangement of mixtures (Step 5). Based on 
these results, we calculated the GPE and the 
Entropy (Step 6).  

From the calculation of the Entropy and GPE, 
we proceeded to the mathematical modeling of 
functions (Step 7). Thus, the functions Entropy and 
GPE are presented by Equations (19) and (20). 

 

(19) 

 

(20) 
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Lastly, Step 8 was executed. By the maximization 
of ξ , described in Equation (15), the optimal 
weights w1, w2 and w3, were found. The values are: 
w1 (weight of Life of cutting tool) = 0.4976; w2 
(weight of Productivity) = 0.0000; and w3 (weight of 
Cost) = 0.5024. The Figure 7 shows the Pareto 
frontier built using the NBI method, with the 
optimal highlighted. 

These optimal weights were used in a 
multiobjective optimization of life of the cutting 
tool, productivity, and cost, as Equation (12), 
reaching the values of 3,103, 1,697 and 0.03594, 
respectively. The optimal values of the decision 
variables are: Feed rate = 0.35 mm rev-1 and 
Rotation = 248 rpm. 

In Figure 7, we can see that the distribution of 
Pareto optimal points on the frontier is evenly 
distributed. Moreover, we can find in Figure 7 the 
best-fitted point (the highlighted one in the figure), 
considering as selection criteria Entropy and GPE. 
With our proposal, we discovered the optimal point 
in the frontier that was, at the same time, the more 
diversified one and the one with the lowest error 
when comparing the ideal value for each objective 
function. 

Conclusion 

This study aimed to propose a method that can 
identify the optimal weights involved in a 
multiobjective formulation, in a non-subjective 
manner. The lack of studies proposed to this end are 
evidence of this study’s relevance. The definition of 
these weights is also important because this 
information can be useful for the decision maker in 
decision-making process. 

Thus, this paper has presented a methodology 
for defining the optimal weights that, by using the 
design of experiments (DOE), has generated 
optimum values for the decision variables that can 
be implemented in the vertical turning process 
analyzed herein. Despite it being a method with a 
relatively large number of ‘steps’, it presents itself as 
easy to implement, without generating large 
computational demand, since the tools are available 
in popular software such as the Solver function of 
Excel® and Minitab®. 

The Entropy and the Global Percentage Error 
(GPE) function, used as a criterion for evaluating 
Pareto-optimal solutions, were identified as suitable 
indicators, enabling their modeling via a polynomial 
of mixtures that delimited a region of maximum 
diversification and minimum error for the weight 
combination analyzed. 

Another finding in this study was the possibility 
of constructing, in an easy way, an evenly distributed 
Pareto frontier for more than two objectives. With 
the present proposal, the Entropy and the GPE can 
be calculated for any number of objective functions. 
Besides, the Pareto frontier and the optimal weights 
can be reached using the NBI method as described. 
This is an advantage, mainly when the 
computational economy is considered. 

In the analyzed process, the optimal parameters 
‘Feed rate = 0.35 mm rev-1’ and ‘Rotation =  
248 rpm’ give us a maximum tool life and minimum 
cost region. It is important to see that increasing tool 
life is a way to reduce cost. This is true, mainly in 
this process, because of the features of the material. 

Thus, the main contributions of this study are 
the proposal of a structured method, differentiated 
in relation to the techniques found in the literature, 
of identifying optimal weights for multiobjective 
problems and the possibility of viewing the optimal 
result along the Pareto frontier of the problem. This 
viewing possibility is very relevant information for 
the more efficient management of processes. 
Moreover, it can be stated that the proposed method 
promotes maximum achievement among multiple 
objectives, i.e., between a set of Pareto-optimal 
solutions, being able to identify the best optimal, 
based on the aforementioned selection criteria. 
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